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introduction



Aristotelian spacetime



Newtonian spacetime



Galilean spacetime



Conclusion 1. Each of these classical spacetime theories posits
less structure, or ascribes less structure to the world, than its
predecessors. Galilean spacetime, for example, is obtained by
‘taking something away’ — the concept of absolute rest — from
Newtonian spacetime.



Two reasons I care about this.



Conclusion 2. Each of these classical spacetime theories is not
equivalent to its predecessors. Aristotelian and Newtonian
spacetime, for example, disagree about whether or not there is a
center of the universe.



Structural parsimony. All other things equal, we should prefer
theories that posit less structure.



North: “This is a principle informed by Ockham’s razor; though it
is not just that, other things being equal, it is best to go with the
ontologically minimal theory. It is not that, other things being
equal, we should go with the fewest entities, but that we should go
with the least structure.”



Sider: “structurally simpler theories are more likely to be true”.



Geroch (!): “Although the evidence on this is perhaps a bit scanty,
it seems to be the case that physics, at least in its fundamental
aspects, always moves in this one direction. It may not be a bad
rule of thumb to judge a new set of ideas in physics by the
criterion of how many of the notions and relations that one feels to
be necessary one is forced to give up.”



Structural parsimony. All other things equal, we should prefer
theories that posit less structure.



The Onion Thesis: A physical theory is like an onion. It has
layers of structure; some play important roles in the theory, and
others are redundant or superfluous or surplus to the theory. One
of the distinctive aims of philosophy of physics is to ‘peel away’
layers of the latter kind.



Chen: excising structure from a theory “eliminates the need for a
large class of arbitrary conventions [. . . and] in the absence of these
arbitrary conventions, we can look directly into the real structure
of the [. . . ] objects without worrying that we are looking at some
merely representational artifact”.





outline

I the automorphism approach

I the category approach

I onions



the automorphism approach



Some (very recent) history.



X (X, τ)

<



V (V, g)

<



And there are many other examples. . .



SYM: A mathematical object X has more structure than a
mathematical object Y if and only if the automorphism group
Aut(X ) is “smaller than” the automorphism group Aut(Y ).



SYM∗: A mathematical object X has more structure than a
mathematical object Y if and only if Aut(X ) ( Aut(Y ).



Three arguments for SYM∗:

I the argument from examples

I the argument from size

I the argument from definability



The argument from examples: SYM∗ makes intuitive verdicts in
many easy cases of structural comparison.



X (X, τ)

<



V (V, g)

<



Newtonian spacetime



Galilean spacetime



The fact that SYM∗ captures some simple examples speaks in
favor of the criterion, but it is not entirely convincing. . .



The argument from size: Since automorphisms are
structure-preserving maps from an object to itself, if
Aut(X ) ( Aut(Y ), this means that X has fewer automorphisms
than Y , which suggests that X has more structure that these
automorphisms are required to preserve.



The argument from definability.



Desideratum. A mathematical object X has more structure than a
mathematical object Y if and only if X has all of the structures
that Y has and X has some structure that Y lacks.



A topological space (X , τ) vs a metric space (X , d).



Desideratum. A mathematical object X has more structure than a
mathematical object Y if and only if X can define all of the
structures that Y has, but X has some piece of structure that Y
does not define.



Question. Is it the case that X has more structure than Y
according to SYM∗ if and only if X can define all of the structures
that Y has, but X has some piece of structure that Y does not
define?



The basic set-up:

I Let Σ1 and Σ2 be signatures. We will think of the elements of
Σ1 and Σ2 as the encoding the ‘basic structures’ on the two
objects that we will consider.

I Let A be a Σ1-structure and B a Σ2-structure with the same
underlying set. We will think of A and B as the two objects
whose structures will we be comparing.

I Let p ∈ Σ2 be one of the basic structures on B.



We say that the Σ1-structure A explicitly defines pB if there is a
Σ1-formula φ such that φA = pB .



We say that the Σ1-structure A implicitly defines pB if
h[pB ] = pB for every automorphism h : A → A of A.



If A explicitly defines pB , then A implicitly defines pB . The
converse does not hold.



Proposition 1. The following are equivalent:

1. For every symbol p ∈ Σ2, A implicitly defines pB , but there is
a q ∈ Σ1 such that B does not implicitly define qA.

2. Aut(A) ( Aut(B)



Question. Is it the case that X has more structure than Y
according to SYM∗ if and only if X can define all of the structures
that Y has, but X has some piece of structure that Y does not
define?

Answer. Yes, if we mean implicit definability.



Two problems with SYM∗:

I sensitivity

I triviality



Sensitivity: Let (X , τ) be a topological space and Y a set that is
not equal to X .



Triviality: When an object X has a trivial automorphism group,
there is no object that has more structure than X .



Malament’s gira�e



c1 c2

c3
c4

. . .

c1 c2

c3
c4

. . .

a {c1, c2, . . .}-structure A vs a {p, c1, c2, . . .}-structure B



Question. Is it the case that X has more structure than Y
according to SYM∗ if and only if X can define all of the structures
that Y has, but X has some piece of structure that Y does not
define?

Answer. No, if we mean explicit definability.



the category approach



More (very recent) history.



SYM∗ answers the question when does a mathematical object X
have more structure than a mathematical object Y ?



The category approach answers the question when does one type
of mathematical object have more structure than another type of
mathematical object? or when does one theory posit more
structure than another theory?
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a category



A functor is a structure-preserving map between categories.



A functor F : C → D is full if for all objects c1, c2 in C and arrows
g : Fc1 → Fc2 in D there exists an arrow f : c1 → c2 in C with
Ff = g .



The Baez et al. method. We say that a functor F : C → D
forgets structure if it is not full. This captures a sense in which
(relative to the comparison generated by F ) objects in C have
more structure than objects in D.
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(X, τ )

(Y, τ )

The category of topological spaces
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X

Y

The category of sets



(M, g)

. . . . . .

..
.

..
.

..
.

..
.

. .
.

. .
.

(1-3) general relativity
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(M, g)

(3-1) general relativity



Three arguments for the Baez method:

I the argument from examples

I the argument from size

I the argument from definability



The argument from examples: The Baez method makes intuitive
verdicts in many easy cases of structural comparison.



X (X, τ)

<



V (V, g)

<



The argument from size: Since arrows in a category are
structure-preserving maps between objects, if F : C → D is not
full, this means that objects of C have fewer arrows between them
than objects of D, which suggests that the former have more
structure that these arrows are required to preserve.



The argument from definability.



A Σ-theory T is a set of Σ-sentences.



A Σ-structure is a model of the Σ-theory T if M � φ for all φ ∈ T .



A Σ-theory T has a category of models Mod(T ).



Question. Suppose that we have two theories T1 and T2 and a
functor F : Mod(T1) → Mod(T2) between their categories of
models. Is it the case that F forgets structure — thus capturing a
sense in which T1 posits more structure than T2 — if and only if
T2 fails to define all of the structures that T1 posits?



Consider the two signatures Σ1 = {p0, p1, p2, . . .} and
Σ2 = {q0, q1, q2, . . .}, each of which have a countable infinity of
unary predicate symbols. We define the Σ1-theory T1 and the
Σ2-theory T2 as follows.

T1 = {∃=1x(x = x)}
T2 = {∃=1y(y = y), ∀y(q0(y) → q1(y)),∀y(q0(y) → q2(y)), . . .}



Question. Suppose that we have two theories T1 and T2 and a
functor F : Mod(T1) → Mod(T2) between their categories of
models. Is it the case that F forgets structure — thus capturing a
sense in which T1 posits more structure than T2 — if and only if
T2 fails to define all of the structures that T1 posits?

Answer. In general, no.



Question. Suppose that we have two theories T1 and T2 and a
nicely behaved functor F : Mod(T1) → Mod(T2) between their
categories of models. Is it the case that F forgets structure — thus
capturing a sense in which T1 posits more structure than T2 — if
and only if T2 fails to define all of the structures that T1 posits?



Proposition 2. Let T+ be a Σ+-theory that is an extension of the
Σ-theory T . The functor Π : Mod(T+) → Mod(T ) forgets
structure if and only if there is a symbol r ∈ Σ+ such that there is
no Σ-formula φ that satisfies T+ � ∀x(r(x) ↔ φ(x)).



Question. Suppose that we have two theories T1 and T2 and a
nicely behaved functor F : Mod(T1) → Mod(T2) between their
categories of models. Is it the case that F forgets structure — thus
capturing a sense in which T1 posits more structure than T2 — if
and only if T2 fails to define all of the structures that T1 posits?

Answer. Yes, when F is a projection functor.



But one would like some more generality. Not every functor is a
projection functor. . .



A reconstrual F of Σ1 into Σ2 is a map from elements of the
signature Σ1 to Σ2-formulas.



A reconstrual F : Σ1 → Σ2 is a translation of a Σ1-theory T1 into
a Σ2-theory T2 if T1 � φ implies that T2 � Fφ for all Σ1-sentences
φ.

(The existence of a translation F : T1 → T2 captures a sense in
which T2 can define the structures of T1.)



A translation F : T1 → T2 naturally induces a functor
F ∗ : Mod(T2) → Mod(T1).



A translation F : T1 → T2 is essentially surjective if for every
Σ2-formula ψ there is a Σ1-formula φ such that
T2 � ∀x1 . . . ∀xn(ψ(x1, . . . , xn) ↔ Fφ(x1, . . . , xn)).

(If a translation F : T1 → T2 is essentially surjective, that captures
a sense in which T1 also can define the structures of T2.)



Proposition 3. Let T1 be a Σ1-theory and T2 a Σ2-theory with
F : T2 → T1 a translation. The following are equivalent:

1. F is essentially surjective.

2. F ∗ : Mod(T1) → Mod(T2) is full, i.e. does not forget
structure.



Question. Suppose that we have two theories T1 and T2 and a
nicely behaved functor F : Mod(T1) → Mod(T2) between their
categories of models. Is it the case that F forgets structure — thus
capturing a sense in which T1 posits more structure than T2 — if
and only if T2 fails to define all of the structures that T1 posits?

Answer. Yes, when F is a functor induced by a translation.



Problems with the Baez method:

I triviality

I relativization to the functor



onions



Summing up.



Structural parsimony. All other things equal, we should prefer
theories that posit less structure.



Chen writes, for example, that excising structure from a theory
“eliminates the need for a large class of arbitrary conventions
[. . . and] in the absence of these arbitrary conventions, we can look
directly into the real structure of the [. . . ] objects without worrying
that we are looking at some merely representational artifact”.



The Onion Thesis: A physical theory is like an onion. It has
layers of structure; some play important roles in the theory, and
others are redundant or superfluous or surplus to the theory. One
of the distinctive aims of philosophy of physics is to ‘peel away’
layers of the latter kind.



Remark 1: Theories are not like normal onions.



Two mistakes one can make when trying to excise structure:

I excising not enough

I excising too much



Let Σ = {p, r} where p is a binary predicate symbol and r is unary
predicate symbol. Consider the Σ-theory

T = {∀x(r(x) ↔ p(x , x))}
How do we excise the structure r from this theory?

I excising not enough

I excising too much



Let Σ = {p, r} where p is a binary predicate symbol and r is unary
predicate symbol. Consider the Σ-theory

T = {∀x(r(x) ↔ p(x , x))}
How do we excise the structure r from this theory?

I excising not enough

I excising too much



Let Σ = {p, r} where p is a binary predicate symbol and r is unary
predicate symbol. Consider the Σ-theory

T = {∀x(r(x) ↔ p(x , x))}
How do we excise the structure r from this theory?

I excising not enough

I excising too much



Suppose we wanted to excise “straightness structure” — i.e. the
derivative operator ∇ — from general relativity. How do we excise
this?

I excising not enough

I excising too much



Suppose we wanted to excise “straightness structure” — i.e. the
derivative operator ∇ — from general relativity. How do we excise
this?

I excising not enough

I excising too much



Suppose we wanted to excise “straightness structure” — i.e. the
derivative operator ∇ — from general relativity. How do we excise
this?

I excising not enough

I excising too much



Layers of the onion can be connected in interesting ways. And
‘peeling away’ a layer is not as simple as just reformulating the
theory in such a way that the piece of structure is not explicitly
referred to.



Thanks!


